Pii: S0166-6851(01)00261-4

نویسندگان

  • Marilyn Parsons
  • Tetsuya Furuya
  • Sampa Pal
  • Peter Kessler
چکیده

Peroxisomes of higher eukaryotes, glycosomes of kinetoplastids, and glyoxysomes of plants are related microbody organelles that perform differing metabolic functions tailored to their cellular environments. The close evolutionary relationship of these organelles is most clearly evidenced by the conservation of proteins involved in matrix protein import and biogenesis. The glycosome can be viewed as an offshoot of the peroxisomal lineage with additional metabolic functions, specifically glycolysis and purine salvage. Within the parasitic protozoa, only kinetoplastids have been conclusively demonstrated to possess glycosomes or indeed any peroxisome-like organelle. The importance of glycosomal pathways and their compartmentation emphasizes the potential of the glycosome and glycosomal proteins as drug targets. © 2001 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0166-6851(01)00440-6

A simple and effective system has been developed from which a number of Plasmodium falciparum dihydrofolate reductase (pfDHFR) mutants conferring resistance to antifolates were randomly generated and characterized. The system exploited error-prone PCR to generate random mutations in the pfDHFR. Using the synthetic gene encoding for wild-type and quadruple mutant (N51I+C59R+S108N+I164L) pfDHFRs ...

متن کامل

Pii: S0166-6851(01)00388-7

A method has been developed for discovering patterns in DNA sequences. Loosely based on the well-known Lempel Ziv model for text compression, the model detects repeated sequences in DNA. The repeats can be forward or inverted, and they need not be exact. The method is particularly useful for detecting distantly related sequences, and for finding patterns in sequences of biased nucleotide compos...

متن کامل

Pii: S0166-6851(01)00402-9

The genes encoding the wild-type and six (five single and one double) mutant dihydrofolate reductase (DHFR) domains of the human malaria parasite, Plasmodium i ax (Pv), were cloned and expressed in Escherichia coli. The catalytic activities and the kinetic parameters of the purified recombinant wild-type and the mutant PvDHFRs were determined. Generally, all the PvDHFR mutants yielded enzymes w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001